Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 12(1): 5999, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1921692

ABSTRACT

The newly identified coronavirus SARS-CoV-2 is responsible for the worldwide pandemic COVID-19. Considerable efforts have been devoted for the development of effective vaccine strategies against COVID-19. The SARS-CoV-2 spike protein has been identified as the major antigen candidate for the development of COVID-19 vaccines. The Pfizer-BioNTech COVID-19 vaccine COMIRNATY is a lipid nanoparticle-encapsulated mRNA encoding a full-length and prefusion-stabilized SARS-CoV-2 spike protein. In the present study, synthetic peptide-based ELISA assays were performed to identify linear B-cell epitopes into the spike protein that contribute to elicitation of antibody response in COMIRNATY-vaccinated individuals. The synthetic S2P6 peptide containing the spike residues 1138/1169 and to a lesser extent, the synthetic S1P4 peptide containing the spike residues 616/644 were recognized by the immune sera from COMIRNATY vaccine recipients but not COVID-19 recovered patients. We assume that the synthetic S2P6 peptide and to a lesser extent the synthetic S1P4 peptide, could be of interest to measure the dynamic of antibody response to COVID-19 mRNA vaccines. The S2P6 peptide has been identified as immunogenic in adult BALB/c mice that received protein-peptide conjugates in a prime-boost schedule. This raises the question on the role of the B-cell epitope peptide containing the SARS-CoV-2 spike residues 1138/1169 in protective efficacy of the Pfizer-BioNTech COVID-19 vaccine COMIRNATY.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Epitopes, B-Lymphocyte , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Liposomes , Mice , Nanoparticles , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
Emerg Infect Dis ; 28(7): 1355-1365, 2022 07.
Article in English | MEDLINE | ID: covidwho-1917185

ABSTRACT

We analyzed 324,734 SARS-CoV-2 variant screening tests from France enriched with 16,973 whole-genome sequences sampled during September 1, 2021-February 28, 2022. Results showed the estimated growth advantage of the Omicron variant over the Delta variant to be 105% (95% CI 96%-114%) and that of the BA.2 lineage over the BA.1 lineage to be 49% (95% CI 44%-52%). Quantitative PCR cycle threshold values were consistent with an increased ability of Omicron to generate breakthrough infections. Epidemiologic modeling shows that, in spite of its decreased virulence, the Omicron variant can generate important critical COVID-19 activity in hospitals in France. The magnitude of the BA.2 wave in hospitals depends on the level of relaxing of control measures but remains lower than that of BA.1 in median scenarios.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , France/epidemiology , Humans , SARS-CoV-2/genetics , Virulence
4.
J Med Virol ; 94(8): 3625-3633, 2022 08.
Article in English | MEDLINE | ID: covidwho-1772792

ABSTRACT

Since early 2021, SARS-CoV-2 variants of concern (VOCs) have been causing epidemic rebounds in many countries. Their properties are well characterized at the epidemiological level but the potential underlying within-host determinants remain poorly understood. We analyze a longitudinal cohort of 6944 individuals with 14 304 cycle threshold (Ct) values of reverse-transcription quantitative polymerase chain reaction (RT-qPCR) VOC screening tests performed in the general population and hospitals in France between February 6 and August 21, 2021. To convert Ct values into numbers of virus copies, we performed an additional analysis using droplet digital PCR (ddPCR). We find that the number of viral genome copies reaches a higher peak value and has a slower decay rate in infections caused by Alpha variant compared to that caused by historical lineages. Following the evidence that viral genome copies in upper respiratory tract swabs are informative on contagiousness, we show that the kinetics of the Alpha variant translate into significantly higher transmission potentials, especially in older populations. Finally, comparing infections caused by the Alpha and Delta variants, we find no significant difference in the peak viral copy number. These results highlight that some of the differences between variants may be detected in virus load variations.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Kinetics , SARS-CoV-2/genetics , Viral Load/methods
5.
Int J Infect Dis ; 113: 12-14, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446701

ABSTRACT

SARS-CoV-2 variants raise concern regarding the mortality caused by COVID-19 epidemics. We analyse 88,375 cycle amplification (Ct) values from variant-specific RT-PCR tests performed between January 26 and March 13, 2021. We estimate that on March 12, nearly 85% of the infections were caused by the Alpha variant and that its transmission advantage over wild type strains was between 38 and 44%. We also find that tests positive for Alpha and Beta/Gamma variants exhibit significantly lower cycle threshold (Ct) values.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Reverse Transcriptase Polymerase Chain Reaction
6.
Euro Surveill ; 26(28)2021 07.
Article in English | MEDLINE | ID: covidwho-1315939

ABSTRACT

We analysed 9,030 variant-specific RT-PCR tests performed on SARS-CoV-2-positive samples collected in France between 31 May and 21 June 2021. This analysis revealed rapid growth of the Delta variant in three of the 13 metropolitan French regions and estimated a +79% (95% confidence interval: 52-110%) transmission advantage compared with the Alpha variant. The next weeks will prove decisive and the magnitude of the estimated transmission advantages of the Delta variant could represent a major challenge for public health authorities.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans , Public Health
7.
Euro Surveill ; 26(23)2021 06.
Article in English | MEDLINE | ID: covidwho-1278339

ABSTRACT

To assess SARS-CoV-2 variants spread, we analysed 36,590 variant-specific reverse-transcription-PCR tests performed on samples from 12 April-7 May 2021 in France. In this period, contrarily to January-March 2021, variants of concern (VOC) ß (B.1.351 lineage) and/or γ (P.1 lineage) had a significant transmission advantage over VOC α (B.1.1.7 lineage) in Île-de-France (15.8%; 95% confidence interval (CI): 15.5-16.2) and Hauts-de-France (17.3%; 95% CI: 15.9-18.7) regions. This is consistent with VOC ß's immune evasion abilities and high proportions of prior-SARS-CoV-2-infected persons in these regions.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans
8.
Emerg Infect Dis ; 27(5): 1496-1499, 2021 May.
Article in English | MEDLINE | ID: covidwho-1154203

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 raise concerns regarding the control of coronavirus disease epidemics. We analyzed 40,000 specific reverse transcription PCR tests performed on positive samples during January 26-February 16, 2021, in France. We found high transmission advantage of variants and more advanced spread than anticipated.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL